
Microprocessors and Microsystems 50 (2017) 222–236 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

An effective pre-store/pre-load method exploiting intra-request idle 

time of NAND flash-based storage devices 

Jin-Young Kim 

a , b , Tae-Hee You 

b , Hyeokjun Seo 

b , Sungroh Yoon 

c , Jean-Luc Gaudiot d , 
Eui-Young Chung 

b , ∗

a Flash Design Team, Device Solution Division, Samsung Electronics, Gyeonggi-Do 445-701, Korea 
b Department of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Korea 
c Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-744, Korea 
d Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2625, USA 

a r t i c l e i n f o 

Article history: 

Received 27 November 2015 

Revised 24 December 2016 

Accepted 12 March 2017 

Available online 18 March 2017 

Keywords: 

Storage 

Solid-state disk 

NAND flash memory 

Read/write cache 

idle time 

a b s t r a c t 

NAND flash-based storage devices (NFSDs) are widely employed owing to their superior characteristics 

when compared to hard disk drives. However, NAND flash memory (NFM) still exhibits drawbacks, such 

as a limited lifetime and an erase-before-write requirement. Along with effective software management, 

the implementation of a cache buffer is one of the most common solutions to overcome these limita- 

tions. However, the read/write performance becomes saturated primarily because the eviction overhead 

caused by limited DRAM capacity significantly impacts overall NFSD performance. This paper therefore 

proposes a method that hides the eviction overhead and overcomes the saturation of the read/write per- 

formance. The proposed method exploits the new intra-request idle time (IRIT) in NFSD and employs a 

new data management scheme. In addition, the new pre-store eviction scheme stores dirty page data in 

the cache to NFMs in advance. This reduces the eviction overhead by maintaining a sufficient number 

of clean pages in the cache. Further, the new pre-load insertion scheme improves the read performance 

by frequently loading data that needs to be read into the cache in advance. Unlike previous methods 

with large migration overhead, our scheme does not cause any eviction/insertion overhead because it ac- 

tually exploits the IRIT to its advantage. We verified the effectiveness of our method, by integrating it 

into two cache management strategies which were then compared. Our proposed method reduced read 

latency by 43% in read-intensive traces, reduced write latency by 40% in write-intensive traces, and re- 

duced read/write latency by 21% and 20%, respectively, on average compared to NFSD with a conventional 

write cache buffer. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Along with the increased number of various portable devices,

NAND flash-based storage devices (NFSDs) such as the solid-state

drive (SSD), universal flash storage (UFS), and embedded multime-

dia card (eMMC) [1] have been increasingly widely employed [2,3] .

NAND flash memories (NFM) have many advantages, such as non-

volatility, small form factor, low power consumption and high per-

formance. However, problems caused by physical limitations, such

as limited program/erase cycles and an erase-before-write require-

ment, still need to be resolved. These issues are typically observed

when short write requests with randomly distributed addresses are

applied to an NFSD. For example, even if only a part of one page
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f NFM would need to be written, the write latency would remain

qual to the time required to access an entire page. Moreover, if

he target page has already been written and contains data to be

odified, the time required to read the page would have to be

dded to the write latency. 

Consequently, most modern NFSDs are equipped with dynamic

andom access memory (DRAM) as a cache in an attempt to limit

erformance degradation. In the past, the cache in storage sys-

ems originally functioned as a speed-matching buffer between

ard disk drives and their hosts [4] . However, an NFSD cache plays

 similar role, but its impact is greater because NFMs cannot sup-

ort in-place updates. In other words, the cache not only temporar-

ly stores host data before transferring them to NFMs, but also re-

uces the number of updates forwarded to NFMs along with the

rase operations, thereby causing long access latencies. 

From the perspective of data management, an NFSD cache is

ifferent from the cache commonly used in main memory systems.

http://dx.doi.org/10.1016/j.micpro.2017.03.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.03.007&domain=pdf
mailto:eychung@yonsei.ac.kr
http://dx.doi.org/10.1016/j.micpro.2017.03.007
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Fig. 1. Performance of SSDs in product generation ( �, �: throughput, � : capacity). 
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Fig. 2. Timing flow of (a) a conventional NFSD and (b) the proposed NFSD utilizing 

IRIT. 
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t focuses on managing write data rather than read data because

f the long write latency of NFM. Hence, an NFSD cache is usually

sed as a write buffer that only stores data in response to write

equests. 

Fig. 1 shows the performance evaluation of solid-state drives

SSDs) according to their generations. The values were collected

sing SSD products manufactured by a leading company over a

hree-year period [1,5] . Because DRAM is used as a write buffer,

he write performance of SSDs for random data improved fourfold

uring that period. However, the write performance subsequently

howed no further improvement. At the same time, the read per-

ormance did not significantly improve. 

In terms of write performance, even if DRAM is used as a write

uffer, it is limited in capacity, and this eventually causes data to

e evicted from DRAM to NFM, consequently degrading the write

erformance. In Fig. 1 , the saturated write performance implies

hat NFSDs are still adversely affected by eviction overhead regard-

ess of the continuously increasing capacity of DRAM. Many studies

imed to improve the write performance by lessening the number

f evictions [6–14] ; however, NFSDs continued to experience po-

ential write performance saturation since the eviction overhead

s not hidden. Accordingly, an effective method for hiding eviction

verhead is sorely needed. 

In terms of read performance, a cache that is used as a write

uffer has only a marginal chance of improving the read perfor-

ance unless data cached by writing is again requested by a read

ction within a short interval. A data management method that

oads missed read data to a cache (known as read-allocation ) was

sed in several approaches [6–14] . However, the method serves to

mprove write performance by reducing write eviction overhead

sing secured clean pages. If read-allocation is used for read per-

ormance improvement, it should be performed carefully because

t can actually increase the eviction overhead. 

In this paper, we propose a new idle time utilization method for

he purpose of hiding eviction/insertion overhead and overcoming

aturated read/write performance. Our contribution is threefold: 

First, we exploit novel unutilized idle time in NFSD (called

ntra-request idle time (IRIT) ) and utilize it to hide the overhead

aused by data migration between an NFSD cache and NFMs. In

ost NFSDs consisting of multiple NFMs, some components should

e idle while a component is operating. For the idle components,

e propose a new idle time duration as an IRIT (see Fig. 2 ), which

iffers from common idle times in that all components within an

FSD are idle without any request from the host. Moreover, unlike

he common idle times that utilize operations, such as merge op-

rations [15–17] , garbage collection [18–22] , and wear-leveling, we

ropose using IRIT to migrate data from one component to another

 e.g., NFM to a cache and vice versa). 

Second, we propose a new eviction scheme termed pre-store .

n our proposed NFSD, the IRIT of all components is exactly com-

uted on the basis of command and latency information of NFMs
nd DRAM, and the pre-store scheme migrates the dirty page data

n the cache to NFMs in advance during IRIT. The scheme reduces

viction overhead by maintaining a sufficient number of clean

ages in the cache and thereby prevents performance degradation.

Third, we propose a new insertion scheme termed pre-load ,

hich also utilizes IRIT. Unlike previous methods that perform

ead-allocation, the proposed pre-load scheme selects data, termed

ot read data as the data are read into the cache. It loads the se-

ected hot read data into the cache in advance by utilizing IRIT. The

re-loaded read data increases the efficiency of the read data and

mproves the read performance. 

Our proposed method can be independently applied to most

ache management schemes. We quantitatively confirmed the ef-

ectiveness of our scheme by integrating it into two different cache

anagement methods, which were then compared. 

The remainder of this paper is organized as follows: in

ections 2 and 3 , we present our motivation and proposed
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Fig. 3. Ratio of busy time vs. intra-request idle time in an NFSD. 

Fig. 4. The ratio of the request operation depending on the addresses. 
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methods, respectively. We show our experimental results in

Section 4 and our conclusions in Section 5 . 

2. Motivation and I/O pattern analysis 

2.1. Example of IRIT utilization 

Fig. 2 shows an example to demonstrate the inherent benefit

behind using IRIT. One is a conventional NFSD; the other is our

proposed NFSD which utilizes IRIT (IRIT-NFSD). The smallest box

represents a page. A DRAM cache and each NFM have four pages

and six pages, respectively. We define a request as {type, logical

page address (LPA), data length} and assume that three requests

{read, LPA6, 6}, {write, LPA5, 1} and {read, LPA4, 1} are sequentially

issued to the two NFSDs. The results of these requests demonstrate

why IRIT-NFSD is superior to the conventional NFSD. 

For the purpose of evaluating the performance of the proposed

method, we assumed latencies for DRAM read, DRAM write, NFM

read, and NFM write of 1, 1, 2, and 5, respectively. In Fig. 2 , the

subfigures a , b , and c , respectively, represent the processing pe-

riod of REQ 0 , REQ 1 and REQ 2 , respectively. For REQ 0 and REQ 2 , the

conventional NFSD processes R6-R11 and R4 from NFM 1 and NFM 2 ,

and W5 for REQ 1 are processed after flushing LPA0 from DRAM to

NFM 1 , of which the total time is 19. The data flushing of DRAM

is managed by a Least Recently Used (LRU) policy. On the other

hand, in IRIT-NFSD, only R6-R11 for REQ 0 is processed from NFM;

W5 and R4 for REQ 1 and REQ 2 are processed from DRAM without

accessing NFMs. Thus, the total time of IRIT-NFSD is 14, which is

shorter than that of the conventional NFSD. This performance im-

provement is due to the fact that the pre-store/pre-load operation

utilizes IRIT, as demonstrated in detail in the next sections. 

2.2. Definition of intra-request idle time 

In Fig. 2 , T busy n and T idle represent the busy time of each compo-

nent (the time during which a component operates) and common

idle time. T idle is frequently referred to as the “idle time”, which

is the time of the state during which all components within the

NFSD, including cache and NFMs, are idle with no request from the

host. In other words, it is the inter-request idle time between one

request and the next request. Utilizing the idle time has been pro-

posed in commodity products as well as in many research effort s

aimed at enhancing the performance [18–26] . Mostly, garbage col-

lection and wear-leveling are performed during the idle time since

they are quite time consuming (10–10 0 0 ms [23,24] ). However, it

is very difficult to predict the idle time because an NFSD does not

know when it can the next request to arrive. Thus, many meth-

ods that predetermine a specific time-out [23] or predict idle time

duration [24] have been proposed; nevertheless, time delay caused

by the improper use of “idle time,” is inevitable. 

In this paper, intra-request idle time (IRIT) is newly defined

( T I RI T n of Fig. 2 ). This is the duration of the idle time experienced

by the individual components of which an NFSD is composed when

an NFSD serves data requested from a host. Although most of the

individual IRIT intervals are very short (from 10 ns to 10 ms), the

accumulated time is not negligible considering its frequent occur-

rences in most NFSDs with multiple NFMs. In the example in Fig. 2 ,

the performance improvement of IRIT-NFSD is attributed to IRIT

utilization. During the a period shown in Fig. 2 , the conventional

NFSD performs only one host request ( REQ 0 ). On the other hand,

IRIT-NFSD performs several operations, including a host request

and two migration requests for pre-storing/pre-loading, which re-

duces the latencies of subsequent requests. More specifically, it

is assumed that REQ 1 should be handled after an eviction opera-

tion, IRIT-NFSD secures clean pages in advance through pre-storing

while handling REQ ( a-1 period). The clean pages help the next
0 
equest ( REQ 1 ) to be handled without eviction. As for REQ 1 , REQ 2 

s already assisted by the pre-load that migrates hot (frequently

eferenced) read data to the cache in advance during an a-2 pe-

iod. Consequently, the proposed IRIT-NFSD reduces the execution

ime of REQ 1 and REQ 2 . 

Although Fig. 2 shows only a simple example, a real NFSD

ould exhibit a much larger amount of IRIT. We confirmed the

mount of IRIT in a quantitative manner by extracting the ratio

f IRIT to busy time in an NFSD with four channels, as shown

n Fig. 3 , where T busy and T IRIT represent the sum of the busy times

nd IRITs of all components. As depicted in the figure, the amount

f IRIT is up to 50% of the total serviceable time, which means that

he amount of data processed by an NFSD can be doubled if this

RIT is ideally utilized. However, to the best of our knowledge, this

act has not yet been exploited. 

Unlike “idle time”, IRIT can easily be calculated based on in-

ormation of only the logical address and data length of the in-

erted host request. Thus, IRIT can be used with no time over-

ead through exact calculation using the IRIT calculator shown

n Fig. 2 b. However, utilizing the IRIT in an NFSD is limited by the

usy status of the cache because the cache plays the role of both

he source and destination, transferring data to-and-from multiple

FMs. Hence, we introduce a small buffer (MBuf in Fig. 2 b), which

nables each component to individually exploit its IRIT by subdi-

iding operating times. Details of MBuf are given in Section 3.2 . 

.3. Hot read data detection for pre-loading 

Observing the I/O pattern characteristics is one of the most im-

ortant aspects of this work. Two interesting properties of traces

ere found by analyzing traces gathered from various computing

ystems; the first is shown in Fig. 4 (see Table 4 for the details of

he traces used). 

Fig. 4 represents the ratio of the number of read only, write

nly, and overlapped addresses to the overall addresses given

o the NFSD. For clarity, addresses with no access are excluded

rom Fig. 4 . For other types, we found that only a small portion
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Fig. 5. The number of read requests accessing the same address (trace: MSN). 
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f the total address space was write-only, whereas a large portion

as read-only or both. This indicates that utilization of the write

ache buffer without considering read data may present significant

indrances to performance improvement. 

The second property we found is depicted in Fig. 5 . We mea-

ured how frequently read requests accessed the same address us-

ng a trace known as MSN . In Fig. 5 , the x-axis signifies the number

f read requests accessing the same address, whereas the y-axis

epresents the number of addresses accessed by the requests. 

If the number of read requests that repeatedly require the same

ddress is large, the graph would be biased to the right and a

arge hit ratio would be achieved when the cache performs read-

llocation. However, as shown in Fig. 5 , the graph is biased to the

eft, which signifies that the data written by read-allocation causes

nly a marginal read hit on the cache. 

Since a read-allocation operation usually causes additional evic-

ion overhead (as mentioned in the previous section), it is quite

rucial to accurately select hot read data, which are supposed

o be located on the right side of Fig. 5 . We paid particu-

ar attention to selecting which data is to be inserted and pre-

oaded into the cache in order to minimize the losses due to

requent eviction operations that are observed in conventional

ead-allocation schemes. Eventually, we observe that the proposed

cheme is superior in that it fully utilizes the cache with minimal

oss. 
Fig. 6. Data flow of read/write operation according 
. Proposed method 

.1. Overview 

In this paper, we propose a new concept referred to as pre-

tore/pre-load . In short, pre-store/pre-load is an eviction/insertion

cheme between the cache and NFMs which makes use of the

RIT. Pre-store stores the dirty page data to NFM in advance by ex-

loiting IRIT to maintain a sufficient number of clean pages in the

ache. Pre-load detects hot read data (the data frequently read in

he cache or to be read in the near future) and loads the detected

ot read data to a cache in advance by utilizing IRIT. Our NFSD re-

uires several new modules to implement the proposed method:

 hot read data table (HRDT), an IRIT calculator, a migration man-

ger, and a migration buffer (MBuf). 

We classify the requests handled in NFSD into two types: the

rst is sent from the host (the host request ); the other is gener-

ted internally to migrate data between the cache and NFMs (the

igration request ). On the basis of these requests, our method has

wo operation paths named Host Request Handling (HRH) and Mi-

ration Request Handling (MRH), which are independently executed

n parallel. The HRH path is not significantly different from con-

entional cache operations in terms of handling a host request. On

he other hand, the MRH path is a unique operation that utilizes

RIT for improved read/write performance. 

Fig. 6 compares data handling by a conventional method

nd the proposed method to explain the data flow in an NFSD

quipped with our scheme. The overall operational flow in the pro-

osed method is presented in Fig. 7 . Fig. 6 a–c compare the data

ow of a read operation in the conventional method with that in

ur proposed method. In Fig. 6 a, when a host read request is given

1). the conventional method checks whether the requested data

xist in the cache. If they do, it serves the data to the host (2A);

therwise, it brings the read data from an NFM through FTL to

he host (2B–3). Depending on the data management policy of the

ache, read-allocation may be performed (3A). 

Fig. 6 b is the same as the conventional method ( Fig. 6 a) ex-

ept for the HRDT-related path. In the HRH path, the proposed

ethod updates only the read count of HRDT (3A) and does not

erform read-allocation. Instead, hot read data detected by HRDT
to each method ((a)–(c): read, (d)–(f): write). 
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Fig. 7. Overall operation flow of the proposed NFSD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Example of IRIT calculation. 

Command # commands Latency T busy T IRIT 

Cache DRAM READ 5 2 10 30 

NFM 1 NFM READ 10 4 40 0 

NFM 2 NFM READ 10 2 20 20 

NFM 3 NFM READ 10 2 20 20 

NFM 4 – – – 0 40 
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are loaded from the NFMs to the cache in advance through the

MRH path ( Fig. 6 c), which is the core of the pre-load operation. 

The MRH path consists of three major steps, as shown in Fig. 7 .

Each of these is explained in Fig. 6 c. When a host request is given

to NFSD, a command list for NFMs and the cache is generated. In

Step 1, the IRIT of all the components is calculated based on the

command lists, and the values are given to the migration man-

ager by the IRIT calculator. The migration manager continuously

observes the status of the cache, MBuf, and NFMs and detects any

data movement for pre-store/pre-load. During Step 2, the migra-

tion manager determines when and how the data movement can

take place without causing time overhead. Then, in Step 3, the cho-

sen candidate is migrated from one component to another ( e.g.,

from an NFM to the cache or vice versa). Finally, Steps–3 are it-

eratively run until there no further migration candidates remain,

or until IRIT is exhausted. 

The write operation differs slightly from the read operation.

When a host write request is given, the conventional method

( Fig. 6 d) writes new data (2) after evicting a dirty page from the

cache (1), when the cache buffer is filled with dirty pages. This,

however, causes garbage collection and also performance degrada-

tion due to the long latency of the program/erase operations of

NFM. Our proposed method eliminates the need to perform an

eviction when handling a host request ( Fig. 6 e) by maintaining a

sufficient number of clean pages in the cache ( Fig. 6 f). Similar to

pre-load, pre-store does not incur time overheads for migration on

account of the MRH path utilizing IRIT. 

3.2. Migration buffer 

Even though the IRIT of all components is computed by the IRIT

calculator, a certain time overhead is inevitable if two components

for data migration (the source component and destination compo-

nent, such as NFM and the cache) do not have sufficient IRIT. In

most NFSDs with multiple NFMs and a single cache, utilization of

the IRIT in NFSD, especially, depends on the status of the cache.

Hence, the proposed NFSD is equipped with a small buffer named

Migration Buffer (MBuf) between the NFM and the cache to sepa-

rate their operation domains. 

If the cache buffer has insufficient IRIT when migrating hot

read data from NFM to the cache without MBuf, the whole sys-

tem would either have to wait until the migration process is com-

pleted or the migration process would have to be delayed until

the cache has sufficient IRIT. However, with MBuf, each migration

operation (the migration between NFM and MBuf and the migra-

tion between MBuf and the cache) can be individually executed.

As a result, MBuf enables each component to individually exploit

its IRIT, thus improving the utilization of IRIT. 
Despite a small capacity (see Fig. 20 ), MBuf is effectively used,

hich is because IRIT occurs rather frequently as shown in Fig. 3 ,

nd data in MBuf is continuously migrated to NFM or the cache

uring IRIT. We assume that MBuf is composed of SRAM in the

FM controller and uses a single MBuf per channel. Thus, the em-

edded SRAM is more than ten times faster than when DRAM is

sed as a cache [27] . 

.3. Host request handling (HRH) 

The HRH path is slightly different from the conventional

ethod in terms of adding the HRDT. HRDT performs the detec-

ion of hot read data for pre-load, which is activated only when a

ost request is read and not found in the cache, as shown in Fig. 7 .

RDT is implemented with a priority queue and records the logi-

al page address (LPA) of the missed read request in the cache and

ead count. If HRDT already has the LPA, HRDT increases the cor-

esponding read count; otherwise, the LPA is added in HRDT. How-

ver, if HRDT is full when adding a new LPA, an LRU LPA is deleted

rom the HRDT and the new LPA is inserted into the Most Recently

sed (MRU) position. 

The logical pages whose read counts are larger than a given

hreshold ( TH Hot ) are considered migration candidates for pre-load.

hen the conditions for a pre-load operation are met, the logi-

al page with a maximum read count among the migration candi-

ates is deleted from HRDT and migrated to cache from the NFMs.

he migration operation and conditions are described in detail in

ection 3.4 . 

.4. Migration request handling (MRH) 

.4.1. Step 1: IRIT calculation 

This step can best be explained by an example ( Table 1 ). We

ssume that an NFSD consists of four NFMs and a single cache and

he read latencies of DRAM and NFM are five and ten, respectively.

First, based on information about the commands of NFMs and

RAM, the busy time of each component ( T busy ) and maximum

usy time ( T busy max 
) are computed. T busy is computed as the product

f the latency of each operation by the number of commands used,

here T busy max 
is the maximum value among the calculated busy

imes ( T busy max 
is 40 in Table 1 ). Finally, the IRIT of each component

 T IRIT ) is calculated by subtracting T busy from T busy max 
. In Table 1 , the

RIT of NFM 1 has a maximum busy time of zero, whereas IRIT of

FM 4 , which is not performing any operation, is equal to the max-

mum busy time of 40. 

.4.2. Step 2: Migration candidate search 

In this step, we determine which migration candidate (page)

s most suitable to perform pre-store/pre-load without time over-

ead. Fig. 8 shows the iterative search process of Step 2. The pro-

ess checks whether a candidate for migration exists in each com-

onent and the candidate causes time overhead (in the order of

Buf, the cache, and NFMs). 

First, the proposed process seeks to avoid an excessive accumu-

ation of pages in MBuf because of its limited capacity. The mi-

ration manager selects a page in MBuf as a migration candidate
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Fig. 8. Algorithm for searching migration candidate (Step 2 in Fig. 7 ). 
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onsidering the state of the page and the order of insertion into

Buf. As shown in Fig. 8 a and b, the page in MBuf is classified as

ne of two states: “pre-store” (a page to be written to NFM) and

pre-load” (a page to be written to cache). However, if there is no 

igration candidate in MBuf or the migration time ( T mig , the time

equired to migrate the selected candidate) is larger than the IRIT

f the component ( T IRIT ), our method searches for another migra-

ion candidate in the cache or NFMs. 

The performance of the cache is more extensively affected by

n eviction than by an insertion because of the long write latency

f the NFM. Thus, we select an eviction page of the cache as the

ext migration candidate to hide the longer latency. Fig. 8 c and d

how the process of checking whether a dirty page satisfying the

ondition for migration exists in the cache. 

If a migration candidate for pre-store is not selected in the

ache, our method lastly checks HRDT. As shown in Fig. 8 e, among

he logical pages whose read counts are larger than a given thresh-

ld ( TH Hot ), the logical page with the maximum read count is se-

ected as a migration candidate for pre-load. If the T IRIT of the se-

ected candidate is larger than T mig , the data migration can be per-

ormed, and the candidate ultimately selected is transferred to Step

. 

.4.3. Step 3: Migration execution 

Step 3 is the process of executing the selected candidate. Be-

ause it is already confirmed through Step 2 that the selected can-

idate does not cause time overhead for migration, the migration

xecution time is hidden from the host. Moreover, because there

s an MBuf in each NFM controller, migration operations are inde-

endently executed for each channel, which means that the IRIT of

ll components are utilized. 

.4.4. Iteration process 

The procedure from Steps 1 to 3 is iterative, and we calculate

RIT at each iterative cycle to check whether IRIT is sufficient for

erforming multiple migration operations. In the MRH path, our

igration process executes iteratively until IRIT is exhausted or no

igration candidate exists. 

.5. Case study 

Our pre-store/pre-load scheme utilizing IRIT can be adopted in

ost cache management methods such as those in [6–14] . We

onducted a case study by applying our scheme to two cache man-

gement schemes, Clean-first LRU (CFLRU) and Temporal and spa-

ial locality aware CLOCK (TS-CLOCK). 

CFLRU [7] is an NFM-aware eviction method. It is a variant of

RU that chooses a clean page as a victim page, rather than a dirty

age. Whereas the eviction of a clean page can be performed with-

ut NFM operation, dirty pages need to be written to NFM, some-

imes causing additional garbage collection. 

TS-CLOCK is a variant of the traditional CLOCK algorithm for

emporal locality. It exploits spatial locality by using the refer-

nce count and two hands [13] . The method minimizes writes to

FMs, by adopting a victim selection algorithm to generate a flash

emory-friendly sequential write pattern. 

Fig. 9 displays an example of CFLRU adopting our method, and

hows how pages of the CF and working regions cooperate when a

re-store/pre-load is performed. CFLRU divides the cache into two

egions: a clean-first region and a working region. The working re-

ion consists of recently used pages, whereas the clean-first region

onsists of candidate pages for eviction [7] . For eviction, CFLRU se-

ects a clean page with the highest priority from the clean-first re-

ion. To make use of our method in CFLRU, an additional region

alled preemptive region (P-region) must be defined. The P-region is

sed to generate clean pages in advance. In other words, before a
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Fig. 9. CFLRU adopting pre-store/pre-load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Timing parameters of DRAM and NFM. 

DRAM [31] NFM [32] 

Read latency 45 ns 75 us 

Write latency 45 ns 1300 us 

Write bandwidth 1.6 GB/s 6.15 MB/s 

Table 3 

Specifications of used NFMs. 

Category Value 

Capacity 2 GByte/channel 

Page size 8 KByte 

Number of blocks 1024 

Number of page per blocks 256 

Number of sectors per page 16 
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cache requires eviction, dirty pages in the P-region are converted

into clean pages in advance from the cache to NFMs through the

pre-store of the MRH path. In Fig. 9 , we assume that the P-region

is the same as the CF region. 

(a) We assume that a cache is filled with dirty pages as a re-

sult of write requests and they need to be evicted for newly

incoming data. 

(b) Because there are dirty pages in the P-region, the pre-store

scheme needs to migrate data comprising dirty pages to

NFMs during IRIT. Pre-store turns a dirty page in the region

into a clean page, which continues until either all the IRIT is

expended or no dirty page remains in the P-region 

(c) If some space for newly incoming data is needed, a clean

page in the P-region is selected as a victim. Because the page

is cleaned in advance by pre-store, no eviction overhead is

generated. Furthermore, the page is closer to the LRU-side

of the cache than a page in the working region. Thus, the

possibility of the cache exploiting locality is increased. 

(d) If hot read data from NFMs must be written to a page for

pre-load, the process is exactly the same as ( c ). The process

vacates a clean page in the P-region and inserts the hot read

data in the MRU position of the cache. 

If there is no clean page in either region, the LRU page is

evicted. For hot read data, however, the data migration is not ac-

tivated when there is no clean page in the P-region so as not to

cause excessive migration overhead. 

4. Experiments 

4.1. Experimental set-up 

We evaluated the proposed pre-store/pre-load scheme by im-

plementing a trace-driven simulator [24,28,29] , which includes a
Table 4 

Used trace information. 

Name Num. of requests Read ratio (%) Avg. R-Req length 

Synthetic 10 0,0 0 0 Varying Varying 

Financial1 5,334,950 23 5.2 

Financial2 3,699,195 82 5.6 

Web1 4,579,810 99 31.6 

Web2 4,261,706 99 32.3 

MSR1 1,211,036 12 51.9 

MSR2 149,864 56 95.0 

MSN 1,081,879 70 20.0 

TPC-C 348,645 63 16.3 

G-Purpose 1,023,244 65 64.0 
age mapping FTL [30] , the storage system configurations, DRAM

nd NFMs. Table 2 summarizes important timing parameters of

RAM and NFM [31,32] . Our storage system is composed of four

FM channels with a 200 MHz I/O clock [33] , DRAM with a capac-

ty of 8 MB and 8GB NFM. The specifications of the NFM are given

n Table 3 . 

To drive the simulator, we prepared several input traces, which

re classified into synthetic and real traces in Table 4 . We gen-

rated various synthetic traces using an in-house trace generator.

ur trace generator collected synthetic traces with various local-

ties, by adjusting the sampling size of addresses given to NFSD

mong the total addresses of 100 MB. Varying the sampling size

f addresses means a varying locality, which is used to evalu-

te performance by varying the locality in Section 4.2 . We also

sed real traces collected from various computer systems. Finan-

ial1/2, Web1/2 and MSR1/2, MSN, TPC-C are from [34] and [35] ,

espectively, and G-Purpose was collected from a common PC us-

ng DiskMon [36] . They are prepared from various sources rang-

ng from read-intensive ( e.g., Web1/2, Financial2) to write-intensive

 e.g., Financial1, MRS1). Details of the traces we used are provided

n [37] . 

Before simulation, our simulator fills a 50% region of NFMs

ith random data. This process induces many additional opera-

ions such as garbage collection for the simulation of our method

n an environment that closely approximates real situations. 

Our experiments compare the following six methods (including

ur approaches): 

• W-LRU: The simplest cache management method, which uses

an LRU policy for eviction and inserts only write data into a

cache. 

• RW-LRU: As with W-LRU, it uses an LRU policy for eviction.

However, it inserts not only write data but also read data by

performing read-allocation. 
Avg. W-Req length Random read (%) Random write (%) 

Varying Varying Varying 

9.5 94 87 

7.9 94 88 

16.2 0 0 

22.8 0 0 

15.2 53 72 

21.0 22 77 

22.3 0 18 

18.9 0 0 

80.6 58 55 
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Fig. 10. Average latency by varying read locality normalized to W-LRU ( ✦ , � , �: 

R-latency, ♦, � , �: W-latency). 
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Fig. 11. Average latency by varying write locality normalized to W-LRU ( ✦ , � , �: 

R-latency, ♦, � , �: W-latency). 
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• CFLRU: A method proposed in [7] , which has the same insertion

policy as RW-LRU. However, its eviction policy assigns a higher

priority to a clean page than a dirty LRU page. 

• TS: A method proposed in [13] , which also has the same in-

sertion policy as RW-LRU. Its eviction priority is decided by

a CLOCK pointer and a reference count that considers tempo-

ral/spatial locality. 

• CFLRU+IRIT, TS+IRIT: These methods are an incorporation of our

scheme in the methods CFLRU and TS. Basically, they follow

the insertion/eviction policies of CFLRU and TS. However, they

incur minimal migration overhead because our proposed pre-

load/pre-store scheme secures clean pages in advance by utiliz-

ing IRIT. 

The size of MBuf, TH Hot , and the ratio of the preemptive region

re set to 10 pages, 5, and 0.4, respectively. Further details on the

hoice of parameters and their definitions are given in Section 4.4 .

.2. Experimental results with synthetic traces 

.2.1. Average latency by varying read locality 

Fig. 10 shows the performance of CFLRU+IRIT and the other

ethods in various read locality conditions. The y-axis on the left

nd its darker lines correspond to read latency (termed R-latency )

ormalized to that of W-LRU, whereas the y-axis on the right and

ts lighter lines correspond to write latency (termed W-latency ). As

entioned above, varying the sampling sizes of the addresses on

he x-axis means varying locality. 

In terms of R-latency, RW-LRU and CFLRU+IRIT exhibit a similar

rend in which R-latency is proportional to read locality. However,

he read performance of CFLRU+IRIT is more effective. RW-LRU per-

orms read-allocation that loads all missed read data to a cache,

ithout considering the “hotness” of the read data; thus, the evic-

ion overhead increases. When the read locality is low (when the

ampling size of the read is 100 MB in Fig. 10 , it is not hot),

FLRU+IRIT inserts a small amount of read data into the cache

ecause the amount of data detected as hot read data is small.

his is also confirmed by increasing the read performance gap be-

ween RW-LRU and CFLRU+IRIT. On the other hand, the R-latency

f CFLRU appears to be independent of the read locality. This is be-

ause the read-allocation data residing in the clean pages is evicted

y write data because the CFLRU policy does not consider the “hot-

ess” of the read data. 

The W-latencies of all schemes appear to be independent of

ead locality. However, their latencies are all shorter than that of

-LRU owing to clean pages generated by read-allocation or hot

ead data. CFLRU+IRIT yields the best write performance, owing to

he effective read caching by the hot read data and the reduction

f migration overhead by IRIT. The write performance of CFLRU is
ore effective than that of RW-LRU, however, the performance gap

etween CFLRU and RW-LRU decreases along the y-axis. Because

he read locality is lower and the number of read miss events

f the cache is increased, the amount of read data allocated to

he cache is larger and produces sufficient clean pages. Hence, the

rite performance is not affected by the eviction policies. 

.2.2. Average latency by varying write locality 

Fig. 11 shows the performance trends of all schemes with vary-

ng write localities. The exclusion of a low write locality (when the

ampling size of writing is 100 MB) does not lead to an increase

n the R-latency of CFLRU+IRIT, unlike that of RW-LRU and CFLRU.

n case the ratio of read and write localities is similar, the number

f clean and dirty pages within the cache is similarly maintained.

ence, when a read-allocation of RW-LRU and CFLRU takes place,

he two cache buffer data management methods can load read

ata to the cache without additional overhead by using the clean

ages. However, when the write locality is low and the cache is

rimarily used for write buffering, eviction of a dirty page for read-

llocation is inevitable, thereby causing long R-latency. Conversely,

ven though the eviction policy of CFLRU+IRIT is similar to that of

FLRU, which selects a clean page as a victim page, the R-latency

f CFLRU+IRIT is half that of CFLRU. This is because CFLRU+IRIT

ot only adopts a conservative policy that loads hot read data

nly when a clean page exists in the CF region of the cache, but

lso because it secures clean pages in advance utilizing IRIT. When

he sampling size for writing is 100 MB, the read performance of

FLRU+IRIT slightly improves because it cannot also have sufficient

lean pages on account of the excessively large amount of write

ata. However, owing to the conservative policy, CFLRU+IRIT never

as a longer R-latency than W-LRU, moreover, neither does it cause

 longer W-latency. 

In terms of W-latency, the performance of both RW-LRU and

FLRU are improved over that of W-LRU, but are not improved

ompared to CFLRU+IRIT. The read-allocation of RW-LRU and

FLRU reduces their eviction overhead through clean pages. How-

ver, the two schemes are problematic in that they have an ab-

olute space shortage for storing write data compared to W-LRU,

hich stores only write data. This problem causes poor write per-

ormance in the low write locality. 

Regardless of varying write locality, the W-latency of

FLRU+IRIT maintains a similar value, which is the smallest

gure compared to the others. This is because of the conservative

ead policy of our scheme, which does not load hot read data to

he cache when there are no clean pages in the CF region. It is

lso caused by pre-store/pre-loads utilizing IRIT, which converts

irty pages generated by write data into clean pages in advance

nd loads hot read data to the cache without migration overhead. 
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Fig. 12. R-latency distribution of ‘CFLRU+IRIT’ in varying locality normalized to W- 

LRU. 

Fig. 13. W-latency distribution of ‘CFLRU+IRIT’ in varying locality normalized to W- 

LRU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Average latencies in varying locality. 

R-latency W-latency 

Min Max Avg Min Max Avg 

W-LRU 1 1 1 1 1 1 

RW-LRU 0.6 3.8 1.6 0.3 0.7 0.5 

CFLRU 2.1 4.9 3.5 0.4 0.5 0.4 

CFLRU + IRIT 0.3 1 0.6 0.2 0.3 0.2 

Fig. 14. W-latency normalized to that of W-LRU. 
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4.2.3. Average latency distribution by varying locality 

We proved the effectiveness of the proposed method under var-

ious locality conditions by measuring the R-latency and W-latency

of CFLRU+IRIT by varying both the read locality and write local-

ity simultaneously, shown in Figs. 12 and 13 . The numbers on the

x-axis and the y-axis of each figure represent the sampling size of

the read and write addresses, respectively, and the numbers on the

z-axis represent the latencies. 

As mentioned earlier, to produce synthetic traces with vari-

ous localities, our trace generator adjusts the sampling size of ad-

dresses given to NFSD among the total address of 100 MB, where

varying the sampling size of an address means various localities.

For example, if we assume that the capacity of the DRAM cache is

8 MB and the numbers on the x- and y-axes are smaller than 6 MB

and 2 MB, respectively, the data of all the addresses given to NFSD

can be stored in the DRAM cache and the data can be quickly ac-

cessed by using a short DRAM read time. In addition, the case in

which the numbers on the x- and y-axes is 4 MB and 4 MB, re-

spectively, is the same as above. 

In Fig. 12 , the R-latency of CFLRU+IRIT becomes longer as the

sampling size of the address increases, but it is not longer than 1.0

normalized to W-LRU. This means that the R-latency of CFLRU+IRIT

is shorter than that of W-LRU under all combinations of read/write

localities. Moreover, the W-latency of CFLRU+IRIT in Fig. 13 is much

shorter than that of W-LRU under the same conditions. 

We omit the experimental results of the others except

CFLRU+IRIT because of the similarity to those shown in

Figs. 10 and 11 and the lack of space. Instead, the minimum,

maximum, and average latencies of all schemes are summarized

in Table 5 . The values in the table represent the latencies of each

scheme, and are normalized to those of W-LRU. Therefore, values

greater than 1.0 in this table mean that a certain scheme performs

worse than W-LRU. 

Table 5 shows that CFLRU+IRIT has the shortest R/W-latency

among all schemes in all cases, whereas, despite adopting a read-
llocation, RW-LRU and CFLRU have longer R-latencies than W-LRU

nder any condition. The result means that the read-allocation im-

roves the write performance, rather than the read performance. 

The experimental results in Sections 4.2.1 –4.2.3 indicate that

he performance of our method is improved for the following rea-

ons: 1) It reduces eviction overhead through the pre-store scheme

tilizing IRIT, which maintains a sufficient number of clean pages

ithin the cache. 2) It adopts a conservative policy that loads hot

ead data only when a clean page exists in the CF region of cache.

) It uses the pre-load scheme without migration overhead by mi-

rating hot read data to the cache in advance as much as IRIT al-

ows. 

.3. Real trace experimental results 

.3.1. Average write latency 

Fig. 14 shows the degree to which our method improves W-

atency. On average, the W-latencies of our method (CFLRU+IRIT

nd TS+IRIT) are both 20% shorter than that of W-LRU, and are 12%

nd 16% above those of CFLRU and TS, respectively. Schemes adopt-

ng IRIT provide the shortest W-latency in all traces. Especially,

ur method produces a 40% shorter W-latency in write-intensive

races (Financial1 and MSR1). This is because of clean pages se-

ured in advance through pre-store utilizing IRIT, which reduces

igration overhead caused by eviction. On the other hand, RW-

RU, CFLRU and TS have an insufficient number of clean pages

n write-intensive traces, which causes the eviction of dirty pages

hen write data is stored to the cache. 

In read-intensive traces (Web1 and Web2), the write perfor-

ance of our methods outperforms those of CFLRU and TS. The

rite count caused by data eviction in the methods is the same

t zero, however, our methods had a higher write hit in the cache

han the others. This can be explained through the hit ratio and

verage hit count by the loaded read data. This is detailed in

ection 4.3.3 . 

In real traces, in particular, RW-LRU exhibits poor write perfor-

ance. RW-LRU does not adopt a clean-first policy, even though it

as many clean pages such as CFLRU. Specifically, a large amount

f read data occupies the storage space of the cache and causes a

ack of space for write buffering. Thus, the W-latency of RW-LRU is
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Fig. 15. R-latency normalized to that of W-LRU. 
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Fig. 16. Hit ratio of loaded read data. 

Fig. 17. Average hit count of loaded read data. 
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onger compared to W-LRU and the W-latencies of other schemes

re shorter according to the clean-first policy. 

.3.2. Average read latency 

Fig. 15 shows the average read latency of all schemes. On av-

rage, CFLRU+IRIT and TS+IRIT have 21% and 28% lower R-latency

han W-LRU, respectively, and they outperform CFLRU and TS

y 56% and 55%, respectively. Moreover, in read-intensive traces

Web1, Web2), the two methods both produce R-latencies that are

3% shorter than that of W-LRU. 

RW-LRU, CFLRU and TS perform read-allocation. However, their

ajor role is not to raise the hit ratio of the read data but to re-

uce write latency. In most traces, they have longer R-latencies

han W-LRU excluding read-allocation. The poor performance has

wo causes: inefficient read-allocation and the eviction overhead it

ncurs. Hence, even though the three methods have different evic-

ion policies, their R-latencies are lower than that of W-LRU. 

On the other hand, our method secures sufficient clean pages

n advance through the pre-store scheme utilizing IRIT and man-

ges loaded read data with its conservative policy that does not

nduce additional operations and migration overhead for loading

ead data. Moreover, they improve the quality of the loaded read

ata by selecting hot read data. The high availability of the loaded

ead data is described in detail in the next section. 

Our experimental results confirm that the proposed method

ubstantially improves read performance for most traces. However,

n Financial1 trace, the W-latency of our method decreases by 40%

ompared to that of W-LRU, whereas the improvement in the R-

atency is negligible. This is because Financial1 consists of over-

apped addresses for read and write requests, as shown in Fig. 4 ,

nd a large amount of data selected as hot read data is already

tored in the cache by write buffering. 

The R-latencies of our methods barely improve in the MSN and

PC-C traces. The traces are extracted from servers with large ca-

acities and their addresses are usually evenly distributed. Hence,

ith our methods, the amount of hot read data is small and the

it ratio of the cache is also low. The low read hit count caused by

heir address distributions is reflected not only in our methods but

lso in RW-LRU and CFLRU. 

.3.3. Hit ratio and hit count of loaded read data 

We define two new metrics to show the relationship between

he amount of read data loaded to the cache and the improvement

n read performance. They are the hit ratio of loaded read data

 HR LR ) and the average hit count of loaded read data ( HC LR ) and

re defined as: 

 R LR = 

N HR 

N LR 

, H C LR = 

C HR 

N HR 

(1)

here N LR , N HR and C HR indicates the amount of read data loaded

o the cache, the amount of read data hit among the loaded data,
nd the total data access count by the hit read data, respectively.

R LR shows how effectively the read data loaded to the cache are

tilized. If the hit rate by loaded hot read data increases, HR LR is

lose to one. HC LR shows how often the loaded hot read data is

equested from the host. Even if HR LR is low, the read latency can

e improved if HC LR is large. 

Fig. 16 shows the value of HR LR , which implies the amount of

ead data hit among read data cached by read-allocation or hot

ead data detection. High HR LR s of CFLRU+IRIT and TS+IRIT prove

hat the effectiveness of the cached data is improved compared to

imple read-allocation. HR LR s of CFLRU and TS are lower than that

f RW-LRU because they evict clean pages containing cached read

ata. Moreover, in Financial1/2, RW-LRU outperforms the other

chemes, because the traces consist of overlapped addresses for

ead and write requests and a large number of read-allocations

auses an increase in a write hit. 

If we consider HC LR shown in Fig. 17 , Financial1 is no longer

he worst case for our method. Because HC LR presents the cumu-

ative count of cached hit data, the higher value means the quality

f cached data has improved. Except for Financial1, the HC LR of our

ethods is the highest. Although our methods only load a small

mount of read data, the data has a high probability of being ac-

essed and of causing large hit counts. HR LR s of our methods are

.3 times and 1.5 times higher, respectively, compared to that of

FLRU and TS, and their HC LR s are up to 5 times higher than the

ther methods. 

For the reason mentioned above, HC LR and HR LR of our methods

re low in Financial1. According to our analysis, write and read ad-

resses of Financial1 access the same addresses quite often (they

re occupied by 78% of the total requests). Hence, read hits occur

ot only from loaded data or read allocated data, but also from

rite buffered data. 

.3.4. Lifetime of NFMs 

The lifetime of NFMs is inversely proportional to the number of

rase operations. Fig. 18 shows the erase count ( E C ) normalized to

hat of W-LRU. 

On average, the other methods except RW-LRU perform a sim-

lar number of erase operations as W-LRU. E s of CFLRU and
C 
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Fig. 18. Erase count normalized to that of W-LRU. 

Fig. 19. Average latency by varying TH Hot . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Average latency by varying MBuf size. 

Fig. 21. Average latency and erase count by varying ratio of a preemptive region 

( �, �: Latency, � : Erase Count). 
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CFLRU+IRIT are 0.2% and 0.5% smaller than that of W-LRU, which

is slightly different depending on the characteristics of the traces.

CFLRU+IRIT performs more effectively than CFLRU in the read-

intensive trace (Web2). It additionally shows the opposite result in

the write-intensive trace (MSR1). 

On the other hand, E C of TS+IRIT is smaller than that of TS. The

eviction priority of TS is decided by not only a clean page but also

a CLOCK pointer and reference, in which a dirty page can be se-

lected as a victim. Hence, securing clean pages utilizing IRIT can

be more helpful to TS than to CFLRU. 

4.4. Parameter sensitivity and optimization 

In this section, we show how the optimal configuration of our

method is obtained through an example of CFLRU+IRIT. In addition,

we investigate the influence of the change of parameters on the

performance, and what the optimal values of the parameters are

when the cost and lifetime of the NFMs are taken into consider-

ation. Furthermore, an experiment is performed using real traces,

and performance factors are normalized to W-LRU. 

4.4.1. TH Hot 

TH Hot , the threshold of the HRDT, determines the amount of hot

read data pre-loaded to the cache. A low TH Hot value increases the

sensitivity of HRDT for read data, therefore, a larger amount of

read data regardless of its hotness can be loaded to the cache. A

high TH Hot results in only hot data being selected, but it reduces

the amount of cached read data and produces no improvement in

read performance. 

In Fig. 19 , if the value of TH Hot is one, the overall trends show

that smaller values of TH Hot result in a shorter R-latency because a

larger amount of read data is loaded into the cache and the prob-

ability of a read hit increases. However, a selection of excessively

small TH Hot may cause pollution of the cache by pre-loading data

that are not sufficiently hot, as well as overhead by a large number

of migration operations. Based on the data in Fig. 19 , we choose
he value of TH Hot as five, which leads to the shortest average la-

ency of all traces. 

.4.2. MBuf size 

MBuf is a small buffer between the NFMs and the cache. It iso-

ates their operating domains for efficient data migration. If a large

Buf is required to improve the performance, its overhead cost

annot be ignored because it is composed of SRAM in the NFM

ontroller. However, as shown in Fig. 20 , MBuf, with a size of only

en pages of NFM, causes the performance to plateau. This implies

hat MBuf is effectively utilized despite the small buffer size be-

ause the proposed method independently exploits the IRIT of each

omponent. 

.4.3. Preemptive region size 

The size of a preemptive region (P-region) ( Section 3.5 ) is

ne of the most important parameters requiring optimization. Our

ethod transforms dirty pages into clean pages until there are ei-

her no dirty pages in the region or until IRIT is exhausted. The

rocess is closely related to both the performance and lifetime of

FMs; the relationship between them is depicted in Fig. 21 . 

The x-axis represents the size of the P-region in terms of the

atio to the total size of the cache, whereas the y-axes on the left

nd the right represent the average latency and E C , respectively.

he performance is improved even if only 10% of the cache is used

s the P-region. Furthermore, if the portion of cache that is used

s excessively large, the performance fluctuates because of massive

viction during IRIT, which incurs a lack of IRIT to execute other

perations on the cache. Moreover, a larger P-region incurs addi-

ional E C because of a greater number of page eviction operations,

hich can reduce the lifetime of the NFM. 

As shown in Fig. 21 , until the P-region is 40% occupied, R/W-

atencies continuously decrease and E C increases with a gentle

lope. Once the occupancy exceeds 40%, the R-latency increases

nd E also increases with a steep slope. Thus, we select 40% as
C 
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Fig. 22. Software execution time normalized to that of W-LRU. 
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Fig. 23. Overall execution time normalized to that of the conventional method. 
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he P-region. This value reduces the lifetime by 0.4%; nevertheless,

t helps improve performance by 21% on average and at most 43%. 

.5. Cost overhead 

Considering practical system design, we analyzed both the

ardware and software cost for our implementation. In the pro-

osed NFSD, a migration buffer (MBuf) and host read data table

HRDT) were added on the hardware-side, and an IRIT calculator

nd migration manager were added on the software-side. 

.5.1. Hardware cost 

In Section 4.4 , we describe an experiment we conducted to de-

ermine the parameter sensitivity and size optimization, for which

he size of MBuf ( S MBuf ) and HRDT ( S HRDT ) were selected as 10 and

0 0 0, respectively. When the memory capacity required for storing

ne page of data and one page address is 4 KB and 4B, respectively,

he hardware cost overhead can be computed as follows : 

 MBu f = 10 pages = 10 × (4 KB + 4 B ) ≈ 40 KB (2) 

 HRDT = 10 0 0 tables = 10 0 0 × (4 B ) ≈ 4 KB (3) 

/W O v erhead = S MBu f + S HRDT = 44 KB (4) 

here MBuf needs to store both the data and address because of

he need to transfer the exact data during IRIT from NFMs to the

ache or vice versa; however, HRDT does not need to store data

nly because of checking the hot read address. Considering the

igh cost of SRAM, the cost overhead of 44 KB cannot be ignored.

owever, most NFSDs already adopt 1MB SRAM for data manage-

ent and 128 KB SRAM called TCM (Tightly Coupled Memory) for

erformance improvement in NFM controllers and the system bus.

herefore, we think that our additional hardware cost is afford-

ble for a performance improvement of up to 40% by the proposed

echniques. 

.5.2. Software cost 

Fig. 22 shows the software execution time of the proposed

ethods and W-LRU, normalized to that of W-LRU. The measured

alues represent the total software execution time of the flash

ranslation layer (FTL) after handling the host command. Quanti-

atively speaking, the proposed methods require a 10% longer soft-

are execution time on average than W-LRU. 

The increase is caused by two factors, the first of which is the

ime added for performing the IRIT calculation. However, the pro-

ess of the IRIT calculation is very simple and does not require

uch software execution time owing to using the command list

hich has already been generated by the NFM controller. The sec-

nd factor is the time added to search for the migration candi-

ate. The searching process requires us to determine which migra-

ion candidate is most suitable; thus, the process checks whether
 candidate for migration exists in each component and the can-

idate causes time overhead in the order of MBuf, DRAM cache,

nd NFMs. The process runs iteratively until IRIT is exhausted or

o further migration candidate exists. In this process, there is no

hoice to spend additional software execution time, which is one

f the most important processes in our proposed method. 

However, the increased values are not reflected in direct pro-

ortion to the overall execution time. Fig. 23 shows the overall ex-

cution time of an NFSD when a read request is required from the

ost. The overall execution time includes the host command pro-

ess time, read time of NFM or DRAM, and aforementioned FTL

oftware time. We assume that the conventional method accesses

FM because the read data is not stored in DRAM and the pro-

osed method accesses DRAM because in this case hot read data

s stored in DRAM. 

In the conventional method, the overall execution time is dom-

nated by NFM read time (the ratio is the same as that of a com-

ercial SSD); therefore, a slight increase in software execution

ime does not greatly affect the overall performance of the NFSD.

n the other hand, the proposed method dramatically reduces the

verall execution time as a result of transferring hot read data from

FM to the DRAM cache, despite the increased software time of

pproximately 10%. The validity of this analysis was well proved by

he result of read performance improvement as shown in Fig. 15 . 

.6. Energy consumption 

In a general NFSD, the system power is dominated by mem-

ry devices such as NFM and DRAM rather than by the controller,

nd the power of the memory devices is related to the number of

ead/write operations and the execution speed. In this section, we

rove the effectiveness of the proposed techniques in terms of the

nergy consumption by measuring the operation count of NFMs

nd DRAM cache in each NFSD and analyze their energy consump-

ion. 

This comparison excludes the three methods (RW-LRU, CFLRU,

S), which incur too many operations of NFMs and the DRAM

ache due to inefficient read-allocation and eviction overhead, and

ven have a much longer read latency than that of W-LRU as

hown in Fig. 15 . In this analysis, therefore, we compare W-LRU

s a baseline and only two methods (CFLRU+IRIT, TS+IRIT) using

ur proposed techniques. The performance of these two methods

s outstanding compared to that of W-LRU. 

As shown in Fig. 24 , our proposed methods incur a larger num-

er of read/write operation counts compared to W-LRU due to ad-

itional read data movement from NFMs to the DRAM cache, by

 maximum of 60% and 8% on average, respectively. However, de-

pite the concern over power, our methods consume less energy

han W-LRU in Fig. 25 , which is attributable to the shorter latency

han that of W-LRU. 

In our methods, the read operations finish earlier than those

f W-LRU due to frequent DRAM data access cached by the effi-
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Fig. 24. Operation counts of NFMs and the cache in each NFSD (NFM 

read/program/erase, Cache read/write). 

Fig. 25. Energy consumption normalized to that of W-LRU. 
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cient hot read data movement (in Fig. 15 ), and the write opera-

tions finish earlier due to the hidden eviction time overhead as

a result of using IRIT (in Fig. 14 ). Thus, our method is character-

ized by shorter periods of power consumption, and the overall sys-

tem energy consumption becomes smaller despite the higher op-

eration count. Quantitatively speaking, the proposed methods con-

sume 14% less energy. In summary, the effectiveness of our tech-

niques is proved in terms of energy consumption as well as per-

formance. 

5. Conclusion 

In this paper, we proposed a new data management method

that utilizes a new idle time scheme. The scheme reduces evic-

tion overhead and is helpful for saturated read/write performance.

Our novel method exploits unutilized idle time ( i.e. , intra-request

idle time). Further, we proposed a data management scheme that

utilizes idle time ( i.e., pre-store/pre-load). The experimental results

showed that the proposed approach reduces read latency by up

to 43% for read-intensive applications and write latency by up to

40% in write-intensive applications, and reduces read latency and

write latency by an average of 21% and 20%, respectively, com-

pared to NFSD with a write cache buffer. In particular, read la-

tency is reduced by 56% compared to CFLRU which performs read-

allocation. In the future, our migration scheme utilizing IRIT could

be extended to improve other important factors of NFSDs, such

as SLC and MLC management of NFMs and wear-leveling manage-

ment among several NFMs. 
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